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Stopping of charged particles in a magnetized classical plasma
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The analytical and numerical investigations of the energy loss rate of the test particle in a magnetized
electron plasma are developed on the basis of the Vlasov-Poisson equations, and the main results are presented.
The Larmor rotation of a test particle in a magnetic field is taken into account. The analysis is based on the
assumption that the energy variation of the test particle is much less than its kinetic energy. The obtained
general expression for stopping power is analyzed for three c@s#e particle moves through a collisionless
plasma in a strong homogeneous magnetic figlthe fast particle moves through a magnetized collisionless
plasma along the magnetic field; afiii) the particle moves through a magnetized collisional plasma across a
magnetic field. Calculations are carried out for the arbitrary test particle velocities in the first case, and for fast
particles in the second and third cases. It is shown that the rate at which a fast test particle loses energy while
moving across a magnetic field may be much higher than the loss in the case of motion through plasma without
magnetic field[S1063-651X98)10608-4

PACS numbss): 52.40.Mj, 52.35-g

[. INTRODUCTION of a moving test particle was studied by Rostoker and Rosen-
bluth [17] for two cases, in the presence or absence of a
Energy loss of fast charged particles in a plasma has beamiform magnetic field. For a test particle having velocity
a topic of great interest since the 1950s-8] due to its u>y+ in the positivez direction, the dielectric function for
considerable importance for the study of basic interactions oo magnetic field gives a resonarkg= wp/u. As a result,
the charged particles in real media; moreover, recently it haghe emission of plasma waves by the test particle with
driven inertial fusion researdrb—8]. o respect tau, where co®9=k,/k. As shown by Rostoker and
The nature of experimental plasma physics is such thagosenp|yth, this leads to sh€renkov-type shock front mak-
expenments are usually perform_ed m_the presence Of.mthg the acute angler/2— 6 with the negativez axis. Their
netic fields, and conse_qugntly it is of interest to 'nvesugat%reatment in the presence of a magnetic field was very gen-
the effects of a magnetic field on the energy loss rate. Strong . : . .
i ; i T ral and involved no assumption concerning the relative
magnetic fields used in the laboratory investigations of plas- . ) ,
gnitudes ofw, and o, i.e., the electron’s plasma and

mas can appreciably influence the processes determined . _ .
cyclotron frequencies. Stopping power was not determined

Coulomb collisiong9]. This influence is even more impor- A ;
tant in white dwarfs and in neutron stars, the magnetic fieldd0" @ny specific case. The authors were aware that in the case

on the surfaces of which can be as high a&-110' kG. whenw > w,, where field electrons in the lowest order can
Stopping of charged particles in a magnetized plasma ha€spond only to the waves in the direction&, the reso-
been the subject of several papEt6—15. Stopping of a fast hance caused by the dielectric function has a different form,
test particle moving with velocityn much higher than the With k=w,/u, being independent of thk direction. The
electron thermal velocity was studied in Ref§10,11,13. electrostatic field of a moving test particle in such magne-
Energy loss of a charged particle moving with arbitrary ve-tized plasma was studied by Ware and Wil&g].
locity was studied in Ref[12]. The expression obtained In the present paper we calculate, in a framework of di-
there for the Coulomb logarithnb,=In(\p/p,) (Whererp is  electric theory, the energy loss rate of a test particle moving
the Debye length ang, is the impact parameter for scatter- in magnetized plasma. We consider the test particle interac-
ing for an angled=/2), corresponds to the classical de- tion only with the electron component of plasma, since it is
scription of collisions. In the quantum-mechanical case, thehis interaction that dominates the stopping of a test particle
Coulomb logarithm id. =In(\p /\g), Wwherehg is the de Bro-  [19,20. Besides, in contrast with the papdtd-15, Lar-
glie wavelength of plasma electrofik6]. mor rotation of a test particle in a magnetic field is taken into
In Ref.[15], the expressions were derived describing theaccount.
stopping power of a charged particle in Maxwellian plasma In Sec. Il, linearized Vlasov-Poisson equations are solved
placed in a classically stron@ut not quantizingmagnetic by means of Fourier analysis in order to obtain a general
field (\g<<a.<\p, Wherea, is the electron Larmor radius  form for the linearized potential generated in a magnetized
under the conditions when scattering must be describetMaxwellian plasma by a test particle and for the energy loss
guantum mechanically. Calculations were carried out forrate of the test particle.
slow test particles whose velocities satisfy the conditions In Sec. lll, the energy loss in a Maxwellian collisionless
(me/m)¥3vr<u<vy, wherem; is the mass of the plasma plasma in the presence of a strong magnetic field is exam-
ions andm,, is the electron mass. ined. Calculations are carried out for arbitrary test particle
The reaction of a uniform plasma to an electrostatic fieldvelocities. In this case, plasma oscillations are also excited,
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though their spectra in the strong magnetic field differ from Ze =

normal ones. o(rt)=— > exg—in(y+Q.)]
In Sec. IV, the energy loss rate in a cold plasma is calcu- T n=-c

lated in the case when the fast particle moves alofig (

=0) and across = 7/2) the magnetic field. It is shown xf dk, k, J,(k, a)J,(k, p)
that in the first case, the energy loss rate is less than Bohr's 0
result. In the second case, the energy loss rate can be much oo dk,explik,&)
higher than Bohr’ It.
igher than I's resu f_w (T ek, K, kg N0y (5)

In Sec. V, we present a qualitative discussion of obtained
results. In the Appendix, analysis of the functi@(z) is

2_ 2 2 I ;
given. wherek“=k;+Kk?, §é=z—ugt, J, is the nth order Bessel

function, p, ¢, andz are the cylindrical coordinates of the
observation point, and(k,,k, ,w) is the plasma dielectric
Il. BASIC RELATIONS function, which has been given by many authi@%,22], and

. R _ _ may be written in the form
We consider a nonrelativistic charged particle having

chargeZe that moves in a magnetized plasma at an arfgle Y _

with respect to the magnetic field directed along thaxis. e(ke k@) =1+ 177 1+2|pf0 dt exq2|pt—W)}
We assume that the energy variation of the particle is much .

smaller than its kinetic energy. In this case the charge density ©®
associated with the test particle is given by the followingwith p=w/v2kv and

expression:

W=t%coda+ k?a’sirfa (7)

kUT

{\/iwct)
1-co .

po(r,t)=Zed(x—a sin(Q.1))s(y—a cog Q1)) s(z— upt),
(1) Here, « is the angle between the wave vectorand the
magnetic field.

whereu, andv are the particle velocity components along  The result represents a dynamical response of the medium
and across from the magnetic fieB, (up,=u cosd, v  to the motion of the test particle in the presence of the ex-
=usind), where u is the particle velocity, Q. ternal magnetic field; it takes the form of an expansion over
=ZeB)/Mc, a=v/Q,, andM are the Larmor frequency, all the harmonics of the Larmor frequency of the particle.
the Larmor radius, and the mass of the particle, respectively, The energy loss ratLR) S of a fast charge is defined as

andc is the speed of light. the energy loss of the charge in a unit time due to interac-
The linearized Vlasov equation of the plasma may betions with the plasma electrons. From E§) it is straight-
written as forward to calculate the electric fielg(r,t)=—V¢(r,t),

and the stopping force acting on the particle. Then, the ELR
of the test particle becomes

of
Vo teduxb] —n= - 2R =R ()

22282 Kmax
S= dk, k, 3%(k, a)

o n=—« J0O
where the self-consistent electrostatic potentiais deter- .
mined by Poisson’s equation Xf ko +n€e Im —1 @)
Z k2+k? e(ky Kk, Kup+nQe)’

V2p= —477p0(r,t)—47rej dvf,(r,v,t), 3) with Kpa= 1 min,» Wherer o, is the effective minimum.im-
pact parameter. Here,,, has been introduced to avoid the
divergence of the integrals caused by the incorrect treatment

whereby, is the unit vector parallel t8,, e, m, andw, are of the short-range interaction between the test particle and
) ) ) C

the charge, mass, and Larmor frequency of plasma electroft@€ plasma electrons within the linearized Vlasov theory.
respectively,fq is the unperturbed distribution function of

plasma electrons, which is taken uniform and Maxwellian, !ll. ELR IN PLASMA IN THE PRESENCE OF A STRONG
MAGNETIC FIELD

No v? Let us analyze expressia8) in the case when a particle
fo(v)= —2_3/26XF{ - 7) , (49 moves in a plasma with a sufficiently strong magnetic field.
(27v7) 2v5 N
Let us assume the magnetic field, on one hand, reasonably
weak and not to be quantized ¢.<kgT or a;>\g), and,
with v+= kg T/m. Here,n, is the unperturbed number den- on the other hand, comparatively strong so that the cyclotron
sity of the plasma electrons. frequency of the plasma electrons exceeds the plasma fre-
By solving Egs.(2) and(3) in space-time Fourier compo- quencyw,= Jamnee?/m or a.<\p, wherea, is the Lar-
nents, we obtain the following expression for the electro-mor radius and, is the Debye lengthp,=v/w, . Because
static potential: of this assumption, the perpendicular cyclotron motion of the
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test and plasma particles is neglected. The test particle’s véhey were aware that for the case>w,, where the
locity parallel toB, is taken asuy. The generation of an plasma electrons in the lowest order can respond to the
electrostatic wake by a superthermal test electron in a magwaves only in the direction dB, the resonance caused by
netized electron plasma in this limit has been discussed bthe dielectric function has a different fork= w,/uy, being

Ware and Wiley[18]. independent of thé& direction. Plasma waves involved in
In the limit of sufficiently strong magnetic field, E¢8)  this case are obliqgue plasma waves having the approximate
becomes dispersion relationw, = wyk, /K. In Secs. Ill A and Il B the
- expression(14) is evaluated for large and small test particle
5 22 fkmaxdk ‘ fmdk ke -1 velocities.
T 0 T o TR T (kg kL kqUo)
) A. ELR for small velocities
with When a test particle moves slowly through a plasma, the

electrons have much time to experience the particle’s attrac-
( @ ) [k ( @ ) tive potential. They are accelerated towards the particle, but
Xl ——|+i=—Y|+—]|, - . :
Kt k, \kpr when they reach its trajectory the particle has already moved
(100 forward a little bit. Hence, we expect an increased density of
electrons at some place in the trail of the particle. This nega-
whereW(z) = X(2) +iY(2) is the plasma dispersion function tive charge density pulls back the positive particle and gives
[23], rise to the ELR.
The Taylor expansion of Eql4) for small ug (A<<1)
yields the “friction law”

1
k23

(K, K ,0)=1+

X(z)=1—-+v2zDi

i) (11)
=],

Zze vt

2 2
Y(z)= \/g z exp( - %) (12) N_)‘

with the “friction coefficient”

Di(z)=exp(—2°) f Ozdt exp(t?) (13 R,=In(1+B?) (16)

———[N?R;—\*R,+0(N%)] (15)

4 . .
is the Dawson integrd3]. At large values of its argument, @nd the” coefficient

the Dawson integral has the valie (z) =1/2z+ 1/4z°.

Substituting Eq(10) into Eq.(9) and making the substi- R2=}In(1+82)— 1 (1_ z) m 1 _
tutionsA =ug /v, B=Kmahp We obtain 2 2 6/ 4 (1+B9)
Z26%1 [Y(N)  Y2(\)+[B2+X(\)]? m 1
= R 17)
S=omE { 2 " TY20 X200 6 (1+B?)
o T B2+ X(\) Note thatB= w./w, and therefor&> 1. The Coulomb loga-
+B 2 —arctan YOO rithms in Egs.(16) and (17) are then the leading terms. We
obtain
+X(A t ) t B* XV 14
(\)|arc ar‘m arc anw . (19 7%
=4
The maximum value ok, , Knax, Will be ac‘1 for fusion 2 7D
plasmas, since the magnetized plasma approximation that ne- 1 -
glects the perpendicular motion of electrons ceases to be X1{2\%In B—\4In B— > (1—€ +O()\6)].

valid for collision parameters less thag.
The first term of Eq(14) is a contribution to the frictional (18

drag due to collisions with the plasma electrons. It is incom-

plete because the analysis treats the background electrons asThe most important property of the ELR at small veloci-

a continuous fluid and there is no allowance being made foties is S=uj provided that the density is not too higlw {

the recoil of the test particle due to each collision. The othex w.). This looks like the friction law of a viscous fluid, and

terms are associated with the resonance giving rise to plasnacordinglyR is called the friction coefficient. However, in

wave emission. the case of an ideal plasma it should be noted that this law
From Eqgs.(9)-(14) we can assume that the main contri- does not depend on the plasma viscosity and is not a conse-

bution in the ELR is given by the values of the particle’s quence of electron-electron collisions with small impact pa-

velocity for whichX(\)<0 andY(\)<|X(\)|. These con- rameter. These collisions are neglected in the Vlasov equa-

ditions correspond to excitation of plasma waves by a movtion. As described above, it is rather the fact that the dressing

ing particle. As shown by Rostoker and Rosenblutfi], the  of the test particle takes some time and produces the negative

plasma waves were not determined for any specific case&harge behind the particle leading to the drag.
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200 tering angle between the electrons is small compared with
the plasma frequency,. The cross section for collisions
with scattering angles of 90° or more iggg= T2y

=m(e?/kgT)? and the frequency of such collisions

150

100 =n00'90°UT. ThUS
%0 v 1 [ e2 371/2
0 w—p:ﬂgno KeT } (23
0 2 4 6 8 10
A If T>6.6x10 °ng®, then v<w, and the collisions in the
. . plasma may be ignored.
FIG. 1. ELR (in MeV/seg of a proton as a function of the In Eq. (8) we introduced a cutoff paramet,, in order

dimensionless parametar=ug /vt in the case when the particle
moves in Maxwellian plasmal(= 10 eV, n,= 10" cm ) placed in
a strong magnetic field for two values Bfy: By=50 kG (dotted
line) andB,=280 kG (solid line).

to avoid the logarithmic divergence at large. This diver-
gence corresponds to the incapability of the linearized Vla-
sov theory to treat close encounters between the test particle
and the plasma electrons properly. The full nonlinear Vlasov
equation accurately describes the scattering of individual
electrons with the test particle in accordance with the Ruth-

For large Uy (Up>vr) we have X(\)=—1A% Y(A)  erford scattering theory. The exact expression for energy
=0. In this case Eq(14) becomes transfer in the Rutherford two-body collision is

_ Zzezws vt

ST (19 AE(p)=

B. ELR for large velocities

(Ap)?  27%* 1
2m  m? [ Z€
mo?2

+ p2

From Eq. (199 we can assume that the ELR isL2
=2 In(kﬁg;polwp) (where k%, is a cutoff parameter in a
plasma in the absence of magnetic fjefidnes smaller than Wherevr:(u2+v$)1’2 is the mean relative velocity between

the Bohr ELR[24]. the test particle and the electron. From the denominator in

Our assumption made at the beginning of this section wagq (24) it follows that the effective minimum impact param-
that the classical approach in consideration of energy '0539&er isr . =7emu?. which is often called the “distance of
in plasma placed in a strong magnetic field limits the Value}losest n;r;])proach " ’Thus

of the magnetic field itself and values of temperature an
plasma concentrations. From these conditions we can obtain 5 2
1 m(u“+u7)

3x 10 5nd2< By< 10°T, (20 ko= — =722 @9
wheren, is measured in ci?, T is measured in eV, and,
in kG. Conditions(20) are always true in the range of pa-
rametersn,< 10 cm 3, B;<100 kG, T>10 2 eV.

In Fig. 1, the ELR is plotted as a function of parameter

ensures agreement of E@) with the Rutherford theory for
small impact parameters. When>2Z¢e?/#, the de Broglie
wavelength begins to exceed the classical distance of closest

for T=10 eV, ny=10 cm™3, and for two different values approach. Under these circumstances we chokgg,
of By: Bo=50 kG (dotted ling andB,=80 kG (solid ling. 2%

The peak corresponds to excitation of plasma waves by a
moving particle. A. Longitudinal motion of a particle (9=0)

In the case of an incidence angle=0 of the test particle,

IV. ELR OF A FAST CHARGED PARTICLE IN COLD we obtain from Eqs(8) and(21) the following expression:
MAGNETIZED PLASMA

27%¢?
We shall further analyze E@8) in the case when the fast S=
particle moves in a cold plasma whose longitudinal dielectric mUo
function is given by the following expressiofi25,26]: fkmax o -1
dk, k f do o Im .
e(k, .k, ,w)=g(w)coFa+h(w)sirfa (21) o kfh(w)+(a)2/u(2))8(w)
with (26)
wf) ws(w-f— iv) Due to the resonant character of the integral avém the
e(w)=1- o(otin)’ h(w)=1+ olol—(0+in)T]’ expression(26), the main contribution to the energy losses
Cc

(22) gives those ranges of integration where dmRes and
Im h<Reh. These conditions are true wher< w,. By us-
where v is the effective collision frequency. The collisions ing the property of the Dirad function from expression
are negligible if the frequency of collisions with large scat- (26), we have
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22282 Kmax
= dk, k,
) 0

XJ:dw wd k*h(w)+(0¥ud)e(w)]. (27

In the expressioli27) the argument of theé function de-
fines the frequencies of normal oscillations of a magnetized
plasma in the long-wavelength approximation. In general,
they are studied in Ref$27,28 in more detail for electron

095
0.9
085
0.8
075
0.7
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plasma. After integration in expressi¢27), we have
Z%e? dow
c [h(w)]’

where the range of integratic!h can be determined from the

inequality P(w) < — w?/k? a)yo andP(w)=h(w)/e(w).

Integrating over frequency in the expressi@8), we ob-

tain finally

Z%e%v

S= mz—[ F(B)—F*(B)—4p°
F(B)+VF(B)—4p°

+21In 2(1+ 69 ,

(28)

(29

where B=w./w,, N\=Uglvy, and F(B)=1+p*+\?B?

with

(kgT/ZENHN?,  1<\<2Z€/hvr,

B=knado= [ (2kgTlhw\, \>2Zlhvr.

As it follows from the expressiof29), for low-intensity
magnetic fields §<1), the ELR tends to the well-known

Bohr result[24]

Z26%w? (K
Sp= d |n< max! °>.
Uo

Wp

Meanwhile, for the high-intensity magnetic fields
(B>1), the expression29) tends to a constant value
q2w§/2u0, which also follows from Eq(14) when thermal
motion of electrons is ignored. For arbitrary valuesgothe

ELR do not exceed the Bohr losseze Fig. 2.

B. Transversal motion of a particle (9= n/2)

In the case of the transversal motion of a particlg,

=0, and the general expressi@#) becomes

(30

31)

27%2e202% 1
ST & 2 NQp(s)Im m} (32
wheres=Kk,,,a,
|P(w)|+ReP(w)
T(w)= \/ 2
+i sgifim P w)]\/|P “’)|_Re Pl@) (33

FIG. 2. Dependence of functioR=S/Sg on the dimensionless
magnetic fields= w./w, in the case when the particle moves along
the magnetic field for the values of parameker5 (dotted ling
and A =10 (solid ling). Plasma parameters are taken equallto
=100 eV andny=10??> cm™3, while Z=1 for the test particle.

Q,(s)=m josdx F(x). (34)

Function Q,(s) is examined in the Appendix, where
asymptotic values are also given. The functi@p(s) is
shown to be exponentially small at>s. Therefore, the se-
ries entering Eq(32) is cut atn,,,=s and the ELR is deter-
mined by harmonics having<<n,.

Let us study Eq.32) in the range of strong magnetic
fields. Two cases must be mentioned here.

(i) c=w,/Q, is a fraction. In this case, from E(B2) we
find

Zzezwg R | 4
S o El 2Qn(s)

cn=

(35

1+(n2_—02)2.

From Eq.(35) it follows that the energy loss decreases in-
versely proportional to the magnetic field.

(i) c=1 (electron test particle From Eq.(32) in this case
we find

Z%€%w Q
—Ql(S) (36)

mo

In this case the ELR increases proportionally to the magnetic
field.

The above examples of the asymptotic ELR dependence
on the value of the magnetic field show strong dependence of
ELR on the mass of a test particle in the case when the
magnetic field is sufficiently strong.

From Eq.(32) it is easy to trace qualitatively the behavior
of energy losses as a function of magnetic field in the general
case. Thus, as it follows from E¢32), the ELR is maximal
for those values of the magnetic field for whielinQ).) is
small. The smallness(n{).) means that the dependence of
the ELR from the magnetic field reveals maxima at integer
values of parameter b=a/\,=w, /., where A\,
=2mvlw, is the plasma oscillations’ wavelength.

Figure 3 shows ELR to Bohr ELR ratio as a function of
parametemb in two cases: for protoridotted ling and elec-
tron (solid line) test particle. The plasma and/or particle pa-

rameters are taken equal =100 eV, ny=10" cm3,
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ELR depends only on the density of the plasma. When the
particle moves across the magnetic fiett 77/2), the latter
essentially affects the ELR value. First, ELR has an oscilla-
tory character of dependence on a magnetic field, becoming
maximal at integer values of parameber w, /() (the ratio
of Larmor circle length and plasma wave wavelengBec-
ond, ELR in the magnetized plasma &t 7/2 is much
greater than the Bohr result. Third, the strong dependence of
ELR on the mass of the test particle can be seen when the
magnetic field is sufficiently strong. If thermal motion of
b plasma electrons is considered, the results obtained in Sec.

FIG. 3. Dependence of a functid=S/S, on the dimension- |V Will be preserved in general. However, the new effects
less parameteb=w, /€, for proton (dotted ling and electron related to the with increased number of normal plasma
(solid line. Parameters are taken equal =100 eV, n, modes will originate. In particular, aty==/2, the new
=108 cm3, A =10, andv/w,=0.01. mechanism of stopping could be expected, namely stopping
by excitation of the Bernstein oscillatiof21].

vlwpe=0.01, and\=10. As it follows from Fig. 3, ELR
oscillates as a function of magnetic field and many times ACKNOWLEDGMENT

exceeds the usual Bohr ELR. The author would like to thank Professor Claude Deutsch

for valuable help and discussions.
V. SUMMARY

The purpose of this work was to analyze the energy loss APPENDIX

rate (ELR) of a charged particle in a magnetized classical Let us examine the properties of functi@,(s) deter-
plasma. Larmor rotation of a test particle in a magnetic fieldnined by Eq(34). To find the asymptotic value of that func-
was taken into account. A general expression obtained fofion ats>1 ands> v, we partition the area of integration in
ELR was analyzed in three particular cases: in a Maxwelliargq. (34) into areasx< v andv<x<s and use the asymptotic
plasma under a strong magnetic field; in a cold plasma whepresentation of the Bessel functionat » [29]. Thus, we
the particle moves along the magnetic field; and in a coldind
plasma when the particle moves across the magnetic field.
The energy loss in a Maxwellian plasma, both in the pres-
ence of a strong magnetic field and in its absence, is condi-
tioned by the induced plasma waves. In the presence of a . . .
strong magnetic field, the dispersion of plasma oscillations is —sin(mv)[ci(2s) - ci(2v)], (A1)
perceptibly altered. From the expressi(i0) one may see \here si¢) and ci@) are integral sine and cosine, respec-
that the frequency and the damping rate of these waves dﬁi/ely,
pend on the direction of spreading relative to the magnetic
field. The maximal frequency of these waves is reached Voo,
when they are spread along the magnetic field. Across the qv:ﬂ'fo dx J,(x).
magnetic field, they cannot be spread. It can be noticed that
for the electron plasma oscillations, these effects are andNumbersq, are less than 1, and slowly fall off as the
lyzed in detail in Refs[17,27,2§. increases. Here we point out some values @f
From the results obtained in Sec. IV, one may conclude=0.225,q,,=0.096,q;5=0.057.
that the ELR essentially depends on the particle’s incident At s<wv, the argument of the Bessel function is lower
angle with respect to magnetic field. In the case of longituthan the index. In this case, the Bessel function is exponen-
dinal motion (3=0), the ELR is less than or comparable tially small, and at a fixed value of, Q,(s) exponentially
with Bohr’s result, and in the limit of strong magnetic fields, vanishes ag increases.

Q.(s)=q,+In §+ cog mv)[si(2s)—si(2v)]

(A2)
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