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Stopping of charged particles in a magnetized classical plasma

H. B. Nersisyan
Division of Theoretical Physics, Institute of Radiophysics and Electronics, Ashtarak-2 378410, Armenia

~Received 6 February 1998!

The analytical and numerical investigations of the energy loss rate of the test particle in a magnetized
electron plasma are developed on the basis of the Vlasov-Poisson equations, and the main results are presented.
The Larmor rotation of a test particle in a magnetic field is taken into account. The analysis is based on the
assumption that the energy variation of the test particle is much less than its kinetic energy. The obtained
general expression for stopping power is analyzed for three cases:~i! the particle moves through a collisionless
plasma in a strong homogeneous magnetic field;~ii ! the fast particle moves through a magnetized collisionless
plasma along the magnetic field; and~iii ! the particle moves through a magnetized collisional plasma across a
magnetic field. Calculations are carried out for the arbitrary test particle velocities in the first case, and for fast
particles in the second and third cases. It is shown that the rate at which a fast test particle loses energy while
moving across a magnetic field may be much higher than the loss in the case of motion through plasma without
magnetic field.@S1063-651X~98!10608-6#

PACS number~s!: 52.40.Mj, 52.35.2g
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I. INTRODUCTION

Energy loss of fast charged particles in a plasma has b
a topic of great interest since the 1950s@1–8# due to its
considerable importance for the study of basic interaction
the charged particles in real media; moreover, recently it
also become a great concern in connection with heavy
driven inertial fusion research@5–8#.

The nature of experimental plasma physics is such
experiments are usually performed in the presence of m
netic fields, and consequently it is of interest to investig
the effects of a magnetic field on the energy loss rate. Str
magnetic fields used in the laboratory investigations of p
mas can appreciably influence the processes determine
Coulomb collisions@9#. This influence is even more impor
tant in white dwarfs and in neutron stars, the magnetic fie
on the surfaces of which can be as high as 105– 1010 kG.

Stopping of charged particles in a magnetized plasma
been the subject of several papers@10–15#. Stopping of a fast
test particle moving with velocityu much higher than the
electron thermal velocityvT was studied in Refs.@10,11,13#.
Energy loss of a charged particle moving with arbitrary v
locity was studied in Ref.@12#. The expression obtaine
there for the Coulomb logarithm,L5 ln(lD /r') ~wherelD is
the Debye length andr' is the impact parameter for scatte
ing for an angleq5p/2!, corresponds to the classical d
scription of collisions. In the quantum-mechanical case,
Coulomb logarithm isL5 ln(lD /lB), wherelB is the de Bro-
glie wavelength of plasma electrons@16#.

In Ref. @15#, the expressions were derived describing
stopping power of a charged particle in Maxwellian plas
placed in a classically strong~but not quantizing! magnetic
field (lB!ac!lD , whereac is the electron Larmor radius!,
under the conditions when scattering must be descri
quantum mechanically. Calculations were carried out
slow test particles whose velocities satisfy the conditio
(me /mi)

1/3vT,u!vT , wheremi is the mass of the plasm
ions andme is the electron mass.

The reaction of a uniform plasma to an electrostatic fi
PRE 581063-651X/98/58~3!/3686~7!/$15.00
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of a moving test particle was studied by Rostoker and Ros
bluth @17# for two cases, in the presence or absence o
uniform magnetic field. For a test particle having veloc
u@vT in the positivez direction, the dielectric function for
no magnetic field gives a resonancekz5vp /u. As a result,
the emission of plasma waves by the test particle w
givenk is concentrated on the cone forming an angleu with
respect tou, where cosu5kz/k. As shown by Rostoker and
Rosenbluth, this leads to a Cˇ herenkov-type shock front mak
ing the acute anglep/22u with the negativez axis. Their
treatment in the presence of a magnetic field was very g
eral and involved no assumption concerning the relat
magnitudes ofvp and vc , i.e., the electron’s plasma an
cyclotron frequencies. Stopping power was not determin
for any specific case. The authors were aware that in the
whenvc@vp , where field electrons in the lowest order ca
respond only to the waves in the direction ofB0 , the reso-
nance caused by the dielectric function has a different fo
with k5vp /u, being independent of thek direction. The
electrostatic field of a moving test particle in such magn
tized plasma was studied by Ware and Wiley@18#.

In the present paper we calculate, in a framework of
electric theory, the energy loss rate of a test particle mov
in magnetized plasma. We consider the test particle inte
tion only with the electron component of plasma, since it
this interaction that dominates the stopping of a test part
@19,20#. Besides, in contrast with the papers@10–15#, Lar-
mor rotation of a test particle in a magnetic field is taken in
account.

In Sec. II, linearized Vlasov-Poisson equations are sol
by means of Fourier analysis in order to obtain a gene
form for the linearized potential generated in a magnetiz
Maxwellian plasma by a test particle and for the energy l
rate of the test particle.

In Sec. III, the energy loss in a Maxwellian collisionle
plasma in the presence of a strong magnetic field is ex
ined. Calculations are carried out for arbitrary test parti
velocities. In this case, plasma oscillations are also exci
3686 © 1998 The American Physical Society
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PRE 58 3687STOPPING OF CHARGED PARTICLES INA . . .
though their spectra in the strong magnetic field differ fro
normal ones.

In Sec. IV, the energy loss rate in a cold plasma is cal
lated in the case when the fast particle moves alongq
50) and across (q5p/2) the magnetic field. It is shown
that in the first case, the energy loss rate is less than Bo
result. In the second case, the energy loss rate can be m
higher than Bohr’s result.

In Sec. V, we present a qualitative discussion of obtain
results. In the Appendix, analysis of the functionQn(z) is
given.

II. BASIC RELATIONS

We consider a nonrelativistic charged particle hav
chargeZe that moves in a magnetized plasma at an anglq
with respect to the magnetic field directed along thez axis.
We assume that the energy variation of the particle is m
smaller than its kinetic energy. In this case the charge den
associated with the test particle is given by the followi
expression:

r0~r ,t !5Zed„x2a sin~Vct !…d„y2a cos~Vct !…d~z2u0t !,

~1!

whereu0 and v are the particle velocity components alon
and across from the magnetic fieldB0 (u05u cosq, v
5u sinq!, where u is the particle velocity, Vc
5ZeB0 /Mc, a5v/Vc , and M are the Larmor frequency
the Larmor radius, and the mass of the particle, respectiv
andc is the speed of light.

The linearized Vlasov equation of the plasma may
written as

] f 1

]t
1v

] f 1

]r
1vc@v3b0#

] f 1

]v
5

e

m

]w

]r

] f 0

]v
, ~2!

where the self-consistent electrostatic potentialw is deter-
mined by Poisson’s equation

¹2w524pr0~r ,t !24peE dvf 1~r ,v,t !, ~3!

whereb0 is the unit vector parallel toB0 , e, m, andvc are
the charge, mass, and Larmor frequency of plasma elect
respectively,f 0 is the unperturbed distribution function o
plasma electrons, which is taken uniform and Maxwellian

f 0~v !5
n0

~2pvT
2!3/2expS 2

v2

2vT
2D , ~4!

with vT5AkBT/m. Here,n0 is the unperturbed number den
sity of the plasma electrons.

By solving Eqs.~2! and~3! in space-time Fourier compo
nents, we obtain the following expression for the elect
static potential:
-

r’s
ch

d

h
ity

ly,

e

ns

-

w~r ,t !5
Ze

p (
n52`

`

exp@2 in~c1Vct !#

3E
0

`

dk'k'Jn~k'a!Jn~k'r!

3E
2`

1` dkzexp~ ikzj!

~kz
21k'

2 !«~kz ,k' ,kzu01nVc!
, ~5!

where k25kz
21k'

2 , j5z2u0t, Jn is the nth order Bessel
function, r, c, and z are the cylindrical coordinates of th
observation point, and«(kz ,k' ,v) is the plasma dielectric
function, which has been given by many authors@21,22#, and
may be written in the form

«~kz ,k' ,v!511
1

k2lD
2 F112ipE

0

`

dt exp~2ipt2W!G
~6!

with p5v/&kvT and

W5t2cos2a1k2ac
2sin2aF12cosS&vct

kvT
D G . ~7!

Here, a is the angle between the wave vectork and the
magnetic field.

The result represents a dynamical response of the med
to the motion of the test particle in the presence of the
ternal magnetic field; it takes the form of an expansion o
all the harmonics of the Larmor frequency of the particle

The energy loss rate~ELR! S of a fast charge is defined a
the energy loss of the charge in a unit time due to inter
tions with the plasma electrons. From Eq.~5! it is straight-
forward to calculate the electric fieldE(r ,t)52“w(r ,t),
and the stopping force acting on the particle. Then, the E
of the test particle becomes

S5
2Z2e2

p (
n52`

` E
0

kmax
dk'k'Jn

2~k'a!

3E
0

`

dkz

kzu01nVc

kz
21k'

2 Im
21

«~kz ,k' ,kzu01nVc!
, ~8!

with kmax51/r min , wherer min is the effective minimum im-
pact parameter. Herekmax has been introduced to avoid th
divergence of the integrals caused by the incorrect treatm
of the short-range interaction between the test particle
the plasma electrons within the linearized Vlasov theory.

III. ELR IN PLASMA IN THE PRESENCE OF A STRONG
MAGNETIC FIELD

Let us analyze expression~8! in the case when a particl
moves in a plasma with a sufficiently strong magnetic fie
Let us assume the magnetic field, on one hand, reason
weak and not to be quantized (\vc,kBT or ac@lB!, and,
on the other hand, comparatively strong so that the cyclot
frequency of the plasma electrons exceeds the plasma
quencyvp5A4pn0e2/m or ac!lD , whereac is the Lar-
mor radius andlD is the Debye lengthlD5vT /vp . Because
of this assumption, the perpendicular cyclotron motion of
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3688 PRE 58H. B. NERSISYAN
test and plasma particles is neglected. The test particle’s
locity parallel to B0 is taken asu0 . The generation of an
electrostatic wake by a superthermal test electron in a m
netized electron plasma in this limit has been discussed
Ware and Wiley@18#.

In the limit of sufficiently strong magnetic field, Eq.~8!
becomes

S5
2Z2e2u0

p E
0

kmax
dk'k'E

0

`

dkz

kz

k2 Im
21

«`~kz ,k' ,kzu0!
~9!

with

«`~kz ,k' ,v!511
1

k2lD
2 FXS v

kzvT
D1 i

ukzu
kz

YS v

kzvT
D G ,

~10!

whereW(z)5X(z)1 iY(z) is the plasma dispersion functio
@23#,

X~z!512&zDiS z

&
D , ~11!

Y~z!5Ap

2
z expS 2

z2

2 D , ~12!

Di ~z!5exp~2z2!E
0

z

dt exp~ t2! ~13!

is the Dawson integral@23#. At large values of its argumen
the Dawson integral has the valueDi (z).1/2z11/4z3.

Substituting Eq.~10! into Eq. ~9! and making the substi
tutionsl5u0 /vT , B5kmaxlD we obtain

S5
Z2e2vT

2plD
2 lH Y~l!

2
ln

Y2~l!1@B21X~l!#2

Y2~l!1X2~l!

1B2Fp2 2arctan
B21X~l!

Y~l! G
1X~l!Farctan

X~l!

Y~l!
2arctan

B21X~l!

Y~l! G J . ~14!

The maximum value ofk' , kmax, will be ac
21 for fusion

plasmas, since the magnetized plasma approximation tha
glects the perpendicular motion of electrons ceases to
valid for collision parameters less thanac .

The first term of Eq.~14! is a contribution to the frictiona
drag due to collisions with the plasma electrons. It is inco
plete because the analysis treats the background electro
a continuous fluid and there is no allowance being made
the recoil of the test particle due to each collision. The ot
terms are associated with the resonance giving rise to pla
wave emission.

From Eqs.~9!–~14! we can assume that the main cont
bution in the ELR is given by the values of the particle
velocity for whichX(l),0 andY(l)!uX(l)u. These con-
ditions correspond to excitation of plasma waves by a m
ing particle. As shown by Rostoker and Rosenbluth@17#, the
plasma waves were not determined for any specific c
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They were aware that for the casevc@vp , where the
plasma electrons in the lowest order can respond to
waves only in the direction ofB0 , the resonance caused b
the dielectric function has a different formk5vp /u0 , being
independent of thek direction. Plasma waves involved i
this case are oblique plasma waves having the approxim
dispersion relationvk5vpkz /k. In Secs. III A and III B the
expression~14! is evaluated for large and small test partic
velocities.

A. ELR for small velocities

When a test particle moves slowly through a plasma,
electrons have much time to experience the particle’s att
tive potential. They are accelerated towards the particle,
when they reach its trajectory the particle has already mo
forward a little bit. Hence, we expect an increased density
electrons at some place in the trail of the particle. This ne
tive charge density pulls back the positive particle and gi
rise to the ELR.

The Taylor expansion of Eq.~14! for small u0 (l!1)
yields the ‘‘friction law’’

S5
Z2e2vT

2A2plD
2 @l2R12l4R21O~l6!# ~15!

with the ‘‘friction coefficient’’

R15 ln~11B2! ~16!

and thel4 coefficient

R25
1

2
ln~11B2!2

1

2 S 12
p

6 D2
p

4

1

~11B2!2

1
p

6

1

~11B2!3 . ~17!

Note thatB5vc /vp and thereforeB@1. The Coulomb loga-
rithms in Eqs.~16! and ~17! are then the leading terms. W
obtain

S5
Z2e2vT

2A2plD
2

3H 2l2ln B2l4F ln B2
1

2 S 12
p

6 D G1O~l6!J .

~18!

The most important property of the ELR at small veloc
ties is S}u0

2 provided that the density is not too high (vp

,vc). This looks like the friction law of a viscous fluid, an
accordinglyR1 is called the friction coefficient. However, in
the case of an ideal plasma it should be noted that this
does not depend on the plasma viscosity and is not a co
quence of electron-electron collisions with small impact p
rameter. These collisions are neglected in the Vlasov eq
tion. As described above, it is rather the fact that the dress
of the test particle takes some time and produces the neg
charge behind the particle leading to the drag.
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B. ELR for large velocities

For large u0 (u0@vT) we have X(l).21/l2, Y(l)
.0. In this case Eq.~14! becomes

S.
Z2e2vp

2

2vT

vT

u0
. ~19!

From Eq. ~19! we can assume that the ELR is 2L
52 ln(kmax

(0) u0 /vp) ~where kmax
(0) is a cutoff parameter in a

plasma in the absence of magnetic field! times smaller than
the Bohr ELR@24#.

Our assumption made at the beginning of this section
that the classical approach in consideration of energy lo
in plasma placed in a strong magnetic field limits the valu
of the magnetic field itself and values of temperature a
plasma concentrations. From these conditions we can ob

331026n0
1/2,B0,105T, ~20!

wheren0 is measured in cm23, T is measured in eV, andB0
in kG. Conditions~20! are always true in the range of pa
rametersn0,1015 cm23, B0,100 kG, T.1023 eV.

In Fig. 1, the ELR is plotted as a function of parametel
for T510 eV, n051014 cm23, and for two different values
of B0 : B0550 kG ~dotted line! andB0580 kG ~solid line!.
The peak corresponds to excitation of plasma waves b
moving particle.

IV. ELR OF A FAST CHARGED PARTICLE IN COLD
MAGNETIZED PLASMA

We shall further analyze Eq.~8! in the case when the fas
particle moves in a cold plasma whose longitudinal dielec
function is given by the following expressions@25,26#:

«~kz ,k' ,v!5«~v!cos2a1h~v!sin2a ~21!

with

«~v!512
vp

2

v~v1 in!
, h~v!511

vp
2~v1 in!

v@vc
22~v1 in!2#

,

~22!

wheren is the effective collision frequency. The collision
are negligible if the frequency of collisions with large sca

FIG. 1. ELR ~in MeV/sec! of a proton as a function of the
dimensionless parameterl5u0 /vT in the case when the particl
moves in Maxwellian plasma (T510 eV,n051014 cm23! placed in
a strong magnetic field for two values ofB0 : B0550 kG ~dotted
line! andB0580 kG ~solid line!.
s
es
s
d
in

a

c

-

tering angle between the electrons is small compared w
the plasma frequencyvp . The cross section for collision
with scattering angles of 90° or more iss90°5pr 90°

2

5p(e2/kBT)2 and the frequency of such collisionsn
5n0s90°vT . Thus

n

vp
5

1

4 Fp2 n0S e2

kBTD 3G1/2

. ~23!

If T@6.631028n0
1/3, then n!vp and the collisions in the

plasma may be ignored.
In Eq. ~8! we introduced a cutoff parameterkmax in order

to avoid the logarithmic divergence at largek' . This diver-
gence corresponds to the incapability of the linearized V
sov theory to treat close encounters between the test par
and the plasma electrons properly. The full nonlinear Vlas
equation accurately describes the scattering of individ
electrons with the test particle in accordance with the Ru
erford scattering theory. The exact expression for ene
transfer in the Rutherford two-body collision is

DE~r!5
~Dp!2

2m
5

2Z2e4

mv r
2

1

S Ze2

mv r
2D 2

1r2

, ~24!

wherev r.(u21vT
2)1/2 is the mean relative velocity betwee

the test particle and the electron. From the denominato
Eq. ~24! it follows that the effective minimum impact param
eter isr min5Ze2/mvr

2 , which is often called the ‘‘distance o
closest approach.’’ Thus,

kmax5
1

r min
5

m~u21vT
2!

Ze2 ~25!

ensures agreement of Eq.~8! with the Rutherford theory for
small impact parameters. Whenu.2Ze2/\, the de Broglie
wavelength begins to exceed the classical distance of clo
approach. Under these circumstances we choosekmax
52mu/\.

A. Longitudinal motion of a particle „q50…

In the case of an incidence angleq50 of the test particle,
we obtain from Eqs.~8! and ~21! the following expression:

S5
2Z2e2

pu0

3E
0

kmax
dk'k'E

0

`

dv v Im
21

k'
2 h~v!1~v2/u0

2!«~v!
.

~26!

Due to the resonant character of the integral overv in the
expression~26!, the main contribution to the energy loss
gives those ranges of integration where Im«!Re« and
Im h!Reh. These conditions are true whenn!vp . By us-
ing the property of the Diracd function from expression
~26!, we have
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S5
2Z2e2

u0
E

0

kmax
dk'k'

3E
0

`

dv vd@k'
2 h~v!1~v2/u0

2!«~v!#. ~27!

In the expression~27! the argument of thed function de-
fines the frequencies of normal oscillations of a magneti
plasma in the long-wavelength approximation. In gene
they are studied in Refs.@27,28# in more detail for electron
plasma. After integration in expression~27!, we have

S5
Z2e2

u0
E

C

dvv

uh~v!u
, ~28!

where the range of integrationC can be determined from th
inequalityP(v),2v2/kmax

2 u0
2 andP(v)5h(v)/«(v).

Integrating over frequency in the expression~28!, we ob-
tain finally

S5
Z2e2vT

4llD
2 FF~b!2AF2~b!24b2

12 ln
F~b!1AF2~b!24b2

2~11b2!
G , ~29!

where b5vc /vp , l5u0 /vT , and F(b)511b21l2B2,
with

B5kmaxlD5 H ~kBT/Ze2lD
21!l2,

~2kBT/\vp!l,
1!l,2Ze2/\vT ,
l.2Ze2/\vT .

~30!

As it follows from the expression~29!, for low-intensity
magnetic fields (b,1), the ELR tends to the well-known
Bohr result@24#

SB5
Z2e2vp

2

u0
lnS kmaxu0

vp
D . ~31!

Meanwhile, for the high-intensity magnetic field
(b.1), the expression~29! tends to a constant valu
q2vp

2/2u0 , which also follows from Eq.~14! when thermal
motion of electrons is ignored. For arbitrary values ofb, the
ELR do not exceed the Bohr losses~see Fig. 2!.

B. Transversal motion of a particle „q5p/2…

In the case of the transversal motion of a particle,u0
50, and the general expression~8! becomes

S5
2Z2e2Vc

2

pv (
n51

`

nQn~s!ImF 21

«~nVc!T~nVc!
G , ~32!

wheres5kmaxa,

T~v!5AuP~v!u1Re P~v!

2

1 i sgn@ Im P~v!#AuP~v!u2Re P~v!

2
, ~33!
d
l,

Qn~s!5pE
0

s

dx Jn
2~x!. ~34!

Function Qn(s) is examined in the Appendix, wher
asymptotic values are also given. The functionQn(s) is
shown to be exponentially small atn.s. Therefore, the se-
ries entering Eq.~32! is cut atnmax.s and the ELR is deter-
mined by harmonics havingn,nmax.

Let us study Eq.~32! in the range of strong magneti
fields. Two cases must be mentioned here.

~i! c5vc /Vc is a fraction. In this case, from Eq.~32! we
find

S.
Z2e2vp

2

pv
n

Vc
(
n51

`
1

n2 Qn~s!F11
n4

~n22c2!2G . ~35!

From Eq.~35! it follows that the energy loss decreases
versely proportional to the magnetic field.

~ii ! c51 ~electron test particle!. From Eq.~32! in this case
we find

S.
Z2e2vp

2

pv
Vc

n
Q1~s!. ~36!

In this case the ELR increases proportionally to the magn
field.

The above examples of the asymptotic ELR depende
on the value of the magnetic field show strong dependenc
ELR on the mass of a test particle in the case when
magnetic field is sufficiently strong.

From Eq.~32! it is easy to trace qualitatively the behavio
of energy losses as a function of magnetic field in the gen
case. Thus, as it follows from Eq.~32!, the ELR is maximal
for those values of the magnetic field for which«(nVc) is
small. The smallness«(nVc) means that the dependence
the ELR from the magnetic field reveals maxima at integ
values of parameter b5a/lp[vp /Vc , where lp
52pv/vp is the plasma oscillations’ wavelength.

Figure 3 shows ELR to Bohr ELR ratio as a function
parameterb in two cases: for proton~dotted line! and elec-
tron ~solid line! test particle. The plasma and/or particle p
rameters are taken equal toT5100 eV, n051018 cm23,

FIG. 2. Dependence of functionR5S/SB on the dimensionless
magnetic fieldb5vc /vp in the case when the particle moves alo
the magnetic field for the values of parameterl55 ~dotted line!
and l510 ~solid line!. Plasma parameters are taken equal toT
5100 eV andn051022 cm23, while Z51 for the test particle.
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y/vpe50.01, andl510. As it follows from Fig. 3, ELR
oscillates as a function of magnetic field and many tim
exceeds the usual Bohr ELR.

V. SUMMARY

The purpose of this work was to analyze the energy l
rate ~ELR! of a charged particle in a magnetized classi
plasma. Larmor rotation of a test particle in a magnetic fi
was taken into account. A general expression obtained
ELR was analyzed in three particular cases: in a Maxwel
plasma under a strong magnetic field; in a cold plasma w
the particle moves along the magnetic field; and in a c
plasma when the particle moves across the magnetic fie

The energy loss in a Maxwellian plasma, both in the pr
ence of a strong magnetic field and in its absence, is co
tioned by the induced plasma waves. In the presence
strong magnetic field, the dispersion of plasma oscillation
perceptibly altered. From the expression~10! one may see
that the frequency and the damping rate of these waves
pend on the direction of spreading relative to the magn
field. The maximal frequency of these waves is reach
when they are spread along the magnetic field. Across
magnetic field, they cannot be spread. It can be noticed
for the electron plasma oscillations, these effects are a
lyzed in detail in Refs.@17,27,28#.

From the results obtained in Sec. IV, one may conclu
that the ELR essentially depends on the particle’s incid
angle with respect to magnetic field. In the case of long
dinal motion (q50), the ELR is less than or comparab
with Bohr’s result, and in the limit of strong magnetic field

FIG. 3. Dependence of a functionR5S/SB on the dimension-
less parameterb5vp /Vc for proton ~dotted line! and electron
~solid line!. Parameters are taken equal toT5100 eV, n0

51018 cm23, l510, andn/vp50.01.
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ELR depends only on the density of the plasma. When
particle moves across the magnetic field (q5p/2), the latter
essentially affects the ELR value. First, ELR has an osci
tory character of dependence on a magnetic field, becom
maximal at integer values of parameterb5vp /Vc ~the ratio
of Larmor circle length and plasma wave wavelength!. Sec-
ond, ELR in the magnetized plasma atq5p/2 is much
greater than the Bohr result. Third, the strong dependenc
ELR on the mass of the test particle can be seen when
magnetic field is sufficiently strong. If thermal motion o
plasma electrons is considered, the results obtained in
IV will be preserved in general. However, the new effec
related to the with increased number of normal plas
modes will originate. In particular, atq5p/2, the new
mechanism of stopping could be expected, namely stopp
by excitation of the Bernstein oscillations@21#.
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APPENDIX

Let us examine the properties of functionQn(s) deter-
mined by Eq.~34!. To find the asymptotic value of that func
tion ats@1 ands.n, we partition the area of integration i
Eq. ~34! into areasx,n andn,x,s and use the asymptoti
presentation of the Bessel function atx.n @29#. Thus, we
find

Qn~s!.qn1 ln
s

n
1cos~pn!@si~2s!2si~2n!#

2sin~pn!@ci~2s!2ci~2n!#, ~A1!

where si(z) and ci(z) are integral sine and cosine, respe
tively,

qn5pE
0

n

dx Jn
2~x!. ~A2!

Numbersqn are less than 1, and slowly fall off as then
increases. Here we point out some values ofqn : q1
.0.225,q20.0.096,q100.0.057.

At s,n, the argument of the Bessel function is low
than the index. In this case, the Bessel function is expon
tially small, and at a fixed value ofs, Qn(s) exponentially
vanishes asn increases.
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